UNIFEOB CENTRO UNIVERSITÁRIO DA FUNDAÇÃO DE ENSINO OCTÁVIO BASTOS

ESCOLA DO BEM-ESTAR BIOMEDICINA E CIÊNCIAS BIOLÓGICAS

PREPAROS DE HISTOTÉCNICAS

UNIFEOB CENTRO UNIVERSITÁRIO DA FUNDAÇÃO DE ENSINO OCTÁVIO BASTOS

ESCOLA DO BEM-ESTAR BIOMEDICINA E CIÊNCIAS BIOLÓGICAS

PREPAROS DE HISTOTÉCNICAS

NOME DO MÓDULO

Cálculos aplicados aos Sistemas Biológicos – Carlos Alberto Colozzo De Souza

Química dos Sistemas Celulares – Odair José dos Santos

Biologia Celular – Cíntia Lima Rossi

Projeto Integrado – Ricardo Alexandre Rosa

Anatomia e Histologia – Amilton Cesar dos Santos

Estudantes:

Adrian R.B. LOPES
Isabela C. R. P. MORAES
Letícia M.G.PALERMO
Lívia M.H.CUNHA
Maria T.N. da SILVA
Yasmim P. AMARO

SÃO JOÃO DA BOA VISTA, SP

PREPAROS DE HISTOTÉCNICAS

Adrian R.B. LOPES¹; Isabela C. R. P. MORAES¹; Letícia M.G.PALERMO¹; Lívia M.H.CUNHA¹; Maria T.N. da SILVA¹; Yasmim P. AMARO¹;

¹ Discente do Centro Universitário da Fundação de Ensino Octávio Bastos Amilton Cesar DOS SANTOS²; Carlos A. C. SOUZA²; CÍNTIA L. ROSSI²; Odair SANTOS²; Ricardo A. ROSA²;

² Docente do Centro Universitário da Fundação de Ensino Octávio Bastos

INTRODUÇÂO

Histologia (histo= tecidos, logia= estudo). Segundo Histologia Comparada de George, Alves e Castro (1997) os estudos histológicos se distinguem em Histologia animal e vegetal. Na animal, obtém-se a histologia geral, que estuda as características, funções e propriedades de cada tecido e a histologia especial cujo o estudo é associado aos diversos tecidos necessários para constituição de um órgão, estuda sua estrutura microscópica. Ela busca conhecer e compreender a forma com que esses demais conjuntos em agrupamento trabalham, sendo por sua própria desenvoltura e/ou voltados para seus órgãos – onde cada um é responsável por uma determinada função, seja para revestir, proteger, curar ou até mesmo servindo como um "step" para caso onde exista a necessidade de um membro reserva.

Para realizar o estudo das células e dos tecidos é necessário o uso de técnicas e instrumentos específicos que nos ajudam a estudá-los e analisá-los mais a fundo. O conjunto dessas técnicas é chamado de 'histotécnicas' e é necessário conhecimento dessa metodologia e deixar o tecido, material de estudo, apto para não sofrer autólise e preservar suas estruturas e composição molecular. Somente com a preparação que podemos fazer análises nos microscópios, pois não será possível enxergar o tecido sem tratamento. A luz passaria direto por ele, por isso a importância de corar os tecidos e as demais técnicas para torná-la eficiente (GEORGE, ALVES E CASTRO, 1997).

Ao estudar por meio deste método, é compressível a construção do conhecimento sobre as células mais importantes presentes em nossos organismos, no entanto, é através da histologia que ficamos a par da física, química, imunologia e também da patologia que são essenciais para um melhor aproveitamento e entendimento da estrutura das células, dos tecidos e dos órgãos, sendo assim, a sua biologia e, como esses diversos componentes são capazes de agir, enfrentar e combater doenças

inflamatórias, infecciosas, resfriados, hematopoiéticos, metabólicas, neoplasias, nutricionais, transtornos imunitários, doenças do sistema nervoso, entre outras. Vale ressaltar que para uma melhor desenvoltura, o conhecimento básico do aparelho microscópio é de extrema precisão, afinal, será este que irá possibilitar a compreensão e percepção da matéria.

Concluindo assim, a histologia que também aborda meios táticos como os instrumentos/aparelhos usados como auxilio em métodos de estudo, é capaz de reparar e consultar os mínimos detalhes tendo a maior precisão quando necessário. Contudo, compreende-se que neste meio há diversas possibilidades para a melhoria e voltada para métodos de estudo e compreensão através da histologia que busca ampliar a visibilidade e contribuir para um melhor entendimento das relações de suas dadas estruturas.

Na preparação para o estudo de tecidos ao uso de microscópio, reside o fundamento de cortes histológicos, além de é claro, uma preparação com lâminas, pincéis, e o material vegetal que será analisado. Este material geralmente é analisado no microscópio de luz – também conhecido como microscópio óptico e/ou fotônico – onde a imagem observada instaura-se no ato dos raios luminosos pelo feixe de luz que, atravessa o material observado.

MATERIAIS E MÉTODOS

O material biológico para ser analisado tende a ser preparado, compreendendo várias etapas, são elas: Coleta do material; fixação; descalcificação; clivagem; desidratação; diafanização; infiltração; inclusão; microtomia; coloração e selagem.

Coleta do material - Por meio de uma lâmina de barbear, são retiradas partes de órgãos, segmentados em pequenos fragmentos. (GEORGE, ALVES E CASTRO, 1997).

Fixação - Sua importância consiste na preservação das células e tecidos, evitando autólise e ataque bacteriano. Após a coleta, estes fragmentos devem ser fixados por métodos químicos ou físicos. Método químico: Os tecidos são imersos em soluções de agentes desnaturantes ou agentes que estabilizam as moléculas ao formar pontes com moléculas adjacentes. O método químico é o mais usado, dentre eles os mais usados são o formaldeído em proporção de 9 para 1 de concentração,

e o paraformol é mais recomendado para pesquisa e patologia. O fixador tem que ser colocado 20x o volume do tamanho da peça e no mínimo 6 horas de fixação, sendo mais correto a peça ficar 24 horas no fixador para obter um melhor resultado. Método físico, os procedimentos usados são o calor ou o frio, o calor (a chama de um bico de Bunsen), o frio (a congelação do material, vários graus abaixo de zero). A Fixação física por congelação é um método alternativo para separar diferentes secções de tecidos. Submete-se o material coletado a um congelamento rápido, assim os tecidos são fixados por congelação, tornando-os rígidos e prontos para serem seccionados. O criostato ou crio micrótomo foi desenvolvido para a produção de cortes e tecidos fixados por congelação. Esse método permite uma preparação objetiva, sem os processos de desidratação e inclusão. (GEORGE, ALVES E CASTRO, 1997).

Descalcificação- Tecidos calcificados são mais resistentes e a rigidez dos tecidos acaba prejudicando os materiais de corte e a análise microscópica. É necessário retirar os sais do tecido para torna-lo mais maleável, existem três formas de descalcificar os tecidos, por ácidos e solução quelante (métodos químicos), ultrassom e micro-ondas (métodos físicos), mas em geral os métodos físicos auxiliam os processos químicos a serem mais rápidos em não atuam sozinhos. Os ácidos mais usados são os: Ácido fórmico, ácido acético e ácido pícrico, são mais usados pois também possuem ação fixadora e já iniciam o processo de descalcificação. Ácidos mais fortes como o clorídrico e nítrico são menos usados pois danificam mais os tecidos. Nos tecidos calcificados a descalcificação é feita logo após a fixação. (NUNES, CINZA, 2016).

Clivagem - Após a fixação o tecido é seccionado. A secção deve ser precisa, o corte deverá acompanhar o maior diâmetro, e suas faces devem ser planas e paralelas. Os órgãos ocos, pele e mucosa precisam ser segmentados de forma perpendicular à superfície, enquanto os de tecido muscular devem acompanhar paralelamente a orientação das fibras. (GEORGE, ALVES E CASTRO, 1997).

Desidratação - Mesmo após a fixação os tecidos ainda se encontram com cerca de 85% de água. Ocorre a extração de água nos tecidos por diversos banhos de soluções de concentrações crescentes de álcool (desde álcool 70% até 100%). (GEORGE, ALVES E CASTRO, 1997).

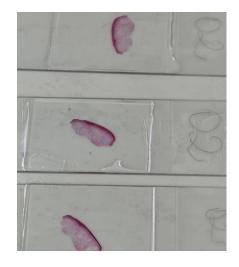
Diafanização - Consiste na retirada do álcool para que os tecidos possam ser englobados pela parafina, pois essa é insolúvel em água e muito menos em álcool. As substâncias intermediarias usadas são o xilitol e o tuluol, que emblemam esses tecidos, deixando-os transparentes ou translúcidos. (GEORGE, ALVES E CASTRO, 1997).

Infiltração - Os fragmentos de tecidos e órgãos devem ser infiltrados com substâncias que lhes proporcione uma consistência rígida. As substâncias mais utilizadas são algumas resinas de plástico (para microscopia de luz e eletrônica) e a parafina (para microscopia de luz). (GEORGE, ALVES E CASTRO, 1997).

Inclusão - Novamente o tecido é embebido em parafina. Desta vez a parafina vai enrijecer o exterior, já que na infiltração ela ocupa os espaços interiores dos tecidos que antes eram ocupados por água e gorduras. A parafina para ser utilizada (tanto na infiltração quanto na inclusão) precisa ser derretida (56 a 60°C). É importante que sua temperatura esteja correta para evitar que as estruturas celulares sejam danificadas. (GEORGE, ALVES E CASTRO, 1997).

Place de Tocida Incluída na

Microtomia - Após a solidificação ao sair da estufa, esse bloco é levado a um micrótomo, onde uma lâmina de aço ou de vidro, fornece cortes de 1 a 10 micrômetros de espessura. (1 micrômero = 0,001mm). Ao realizar o corte, estes são colocados sobre uma superfície de água aquecida (banho-maria) para evitar dobras e depois são catadas pelas lâminas de vidro (laminação). (GEORGE, ALVES E CASTRO, 1997).


Milaráta Danha a

Coloração – Através do uso da coloração torna-se mais evidente a observação dos tecidos e seus componentes. Muitos corantes apresentam substâncias de caráter ácido ou básico e tendem a formar ligações eletrostáticas (salinas) com componentes ionizados dos tecidos. Os componentes que se coram bem com corantes básicos são chamados basófilos e com corantes ácidos de acidófilos. O azul de toluidina, azul de metileno e a hematoxilina são corantes de caráter básico. A eosina é um corante de caráter ácido. A hematoxilina e a eosina são os mais utilizados nas colorações básicas, sendo reconhecidos como H.E. Eosina: é usada para colorir o citoplasma, tendo coloração rosácea. Hematoxilina: colore os núcleos das células (RNA e DNA), tendo coloração roxa-azulada. Lembrando que para fazer o uso dos corantes o tecido precisa ser reidratado novamente, pois os corantes são solúveis em água, neste processo a lâmina passa por concentrações de xilol para a retirada da parafina e posteriormente por concentrações decrescente de álcool até a água pura para reidratação. Após a coração com os corantes o tecido tem de ser desidratado novamente, pelo caminho inverso, com concentrações crescentes em álcool até 100 por cento. Para a retirada do álcool dos tecidos, passa por fim por soluções de xilol. (GEORGE, ALVES E CASTRO, 1997).

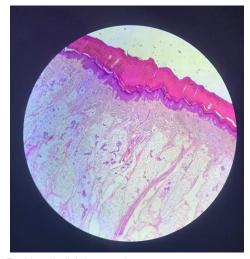
Colorações Histoquímicas tendem a ter um melhor desempenho em colorações de tecidos especiais como o conjuntivo. Elas pigmentam melhor fibras colágenas e tecidos especiais. Ao longo dos nossos estudos em histotécnicas pudemos estudar a coloração tricômico de Masson. Tricômico de Masson, etapas da coloração: 1º desparafinar e hidratar; 2º lavar as lâminas com água destilada por 1 minuto; 3º colocar em solução de Boiün por 1 hora na estufa a 60 graus ou preferencialmente

deixar por uma noite em temperatura ambiente; 4º lavar em água corrente até desaparecer o amarelo deixado pela solução de Bouin e depois em água destilada; 5º corar pela solução de Hematoxilina Férrica de Weigert (A e B) por 10 minutos; 6º lavar em água corrente por 10 minutos e em água destilada; 7º corar pela solução de Escarlate de Biebrich por 5 minutos; 8º passar por água destilada; 9º diferenciar pela solução de ácido fosfotúngstico- fosfomolíbdico durante 10 a 15 minutos; 10º lavar em água destilada; 11º corar pela solução de Azul de Anilina durante 5 a 10 minutos; 12º lavar em água destilada; 13º passar pela solução de Ácido Acético Glacial 1% por 3 a 5 minutos; 14º lavar em água destilada; 15 º desidratar e clarificar. Em seguida, realizar a montagem das lâminas. Resultados: os núcleos serão corados em preto; o citoplasma, queratina e fibras em vermelho; colágeno e muco em azul. (SANTOS K, R, P; ANTÃO V, S, 2021).

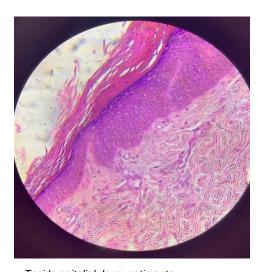
Selagem - Adiciona-se uma cola solúvel em xilol, substância presente devido ao último processo após a coração com os corantes, e cobre o conjunto com uma lâmina de vidro. A amostra foi preparada permanentemente e está pronta para ser estudada nos microscópios. (GEORGE, ALVES E CASTRO, 1997).

Lâminas seladas e prontas. Coloração Tricômico de

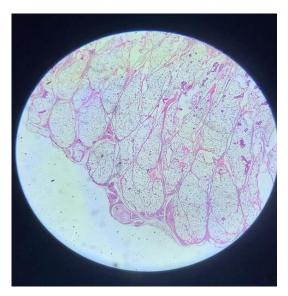
MICROSCOPIA

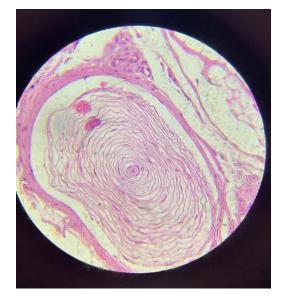

Devido as pequenas dimensões das células e dos componentes da matriz extracelular, utiliza-se o auxílio de microscópios. Há dois tipos fundamentais de

microscópios: Microscópio óptico ou de luz e o microscópio eletrônico. (GEORGE, ALVES E CASTRO, 1997).

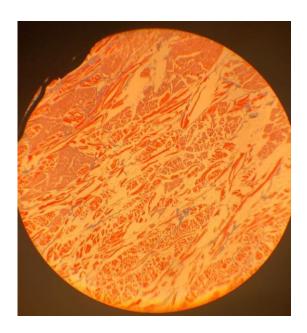

O Microscópio óptico ou de luz (MO) é composto por partes mecânicas e ópticas. O componente óptico consiste em três sistemas de lentes: condensador, objetivas e oculares. O condensador concentra a luz de uma lâmpada e projeta esse feixe sobre o espécime. A objetiva recebe a luz que atravessou o espécime e projeta uma imagem aumentada em direção a ocular, que novamente ampliada, é direcionada a retina, em uma tela, em uma câmera fotográfica ou em um detector eletrônico. (GEORGE, ALVES E CASTRO, 1997).

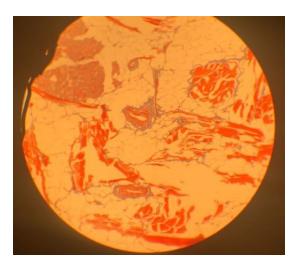
Microscópio eletrônico (ME): Existem dois tipos, o de varredura e de transmissão, ambos se baseiam na interação entre elétrons e componentes dos tecidos. (GEORGE, ALVES E CASTRO, 1997).


RESULTADOS E DISCUSSÕES


Tecido epitelial de revestimento estratificado pavimentoso queratinizado, objetiva 10X. Coloração H.E.

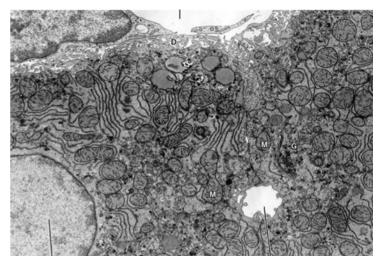
Tecido epitelial de revestimento estratificado pavimentoso queratinizado,


Tecido conjuntivo e adiposo presentes na pele. Aparência mais amarelada, tecido adiposo. (Microscópio Óptico -objetiva 40X). Coloração H.E.



Tecido conjuntivo e adiposo presentes na pele, aparência mais rosácea tecido conjuntivo.

Tecido conjuntivo e adiposo presentes na pele. Aparência mais amarelada, tecido adiposo; aparência mais rosácea tecido conjuntivo (microscópio Óptico -objetiva 40X). Coloração H.E.



Tecido do fígado. Observa-se células parênquimais, células adiposas, artéria e fibras musculares. Coloração de Masson.

A Histoquímica é um ramo que estuda os componentes químicos das células, é a partir de suas colorações que obtemos os melhores diagnósticos que nos permitem uma maior detecção de antígenos específicos e imunofenotipagem de tecidos ou agentes infecciosos. É um exame muito útil na avaliação confirmatória de um determinado diagnóstico, podendo ser utilizado também na avaliação prognóstica de pacientes. (Gabriela Fredo- CRMV-RS- 12455).

Conforme pudemos observar nas nossas lâminas epiteliais coradas em H.E, os tecidos estão saudáveis de acordo com a histologia, o que não podemos dizer das

lâminas coradas em tricômico de Masson do tecido do fígado. Nas lâminas do fígado têm muitas células adiposas, sendo possível o diagnóstico de esteatose. Isso em comparação com lâminas hepáticas presentes no livro Histologia Básica de Junqueira L, C e Carneiro, J (2013).

Micrografia eletrônica do fígado. Os hepatócitos contêm numerosas mitocôndrias, retículo endoplasmático liso e granuloso. O sinusoide é revestido por células endoteliais com amplas fenestras abertas. O espaço de Disse (D) é ocupado por numerosos microvilos que se projetam dos hepatócitos. (9.200x. Cortesia de O. Schmucker.) Imagem do livro Histologia Básica, Junqueira L, C e Carneiro, J (2013).

CONCLUSÃO

Ao longo de nosso aprendizado constatamos que todas as etapas devem ser feitas com êxito para não afetar nos resultados das lâminas e não prejudicar na visualização dos tecidos. Dentre os erros mais cometidos, são contudo erros banais, que apenas uma atenção redobrada os impediria. Itens que exigem atenção: Temperatura ideal da parafina, afiação das lâminas do micrótomo, tempo exigido de reação em cada solução, formato do bloco da parafina, ele precisa estar bem moldado para não dificultar o corte no micrótomo.

Concluímos que a histotécnica proporciona o entendimento dos fundamentos técnicos para a análise dos elementos teciduais. É de suma importância para o descobrimento de novas patologias através de suas técnicas, proporcionando o entendimento do tecido. É essencial aos serviços de saúde, pelo apoio do diagnóstico e tratamento aos pacientes. O domínio correto das histotécnicas é fundamental para

pesquisas científicas, pois os resultados podem variar e não ser o esperado, se houver em uma das etapas erros técnicos.

REFERÊNCIAS BIBLIOGRÁFICAS

JUNQUEIRA, L.C.; CARNEIRO, J. **Histologia básica**, 12ed. Rio de Janeiro: Guanabara Koogan, 2013. 538p.

GEORGE, L.L; CASTRO, R.R.L; ALVES, C.E.R; **Histologia comparada**, 2ed. São Paulo: Roca LTDA, 1997. 298p.

NUNES, C.S; CINZA, L.A; Princípios do Processamento Histológico de Rotina, **Revista Interdisciplinar de Estudos Experimentais**. v. 8, n. único, p. 31-40, 2016.

GABRIELA FREDO. Diagnose Diagnóstico Veterinário. Imuno-Histoquímica na

Medicina Veterinária. 2018. Disponível em:

histoquimico

SANTOS K, R, P; ANTÃO V, S. **Manual de técnica histológica de rotina e de colorações.** 2021. 32 p. Ciências Biológicas. Universidade Federal de Pernambuco, 2021.