

USO DE ANTICORPO IGY ESPECÍFICO DA GEMA DO OVO NO TRATAMENTO DA PARVOVIROSE CANINA: REVISÃO DE LITERATURA

MARIANE DA CUNHA DE MORAES¹, EMILY CRISTINA BIZAIA¹, ALANNE TENÓRIO NUNES²

- 1 Discentes do Curso de Medicina Veterinária UNIFEOB, São João da Boa Vista/SP.
- 2 Docente do Curso de Medicina Veterinária UNIFEOB, São João da Boa Vista/SP.

RESUMO: A parvovirose é uma afecção viral de grande relevância em cães, ocasionando alta mortalidade nesta espécie. Para o tratamento dessa afecção, novas alternativas têm sido utilizadas, incluindo as imunoglobulinas. Quando as galinhas são expostas ao parvovírus, produzem as imunoglobulinas Y (IgY), que são acumuladas nas gemas de seus ovos. Estudos demonstram que o IgY melhora a saúde intestinal dos cães, causando sintomas mais brandos e aumentando também taxa de sobrevida desses animais.

PALAVRAS-CHAVE: CPV-2, galinhas, imunoglobulinas, parvovírus, tratamento.

INTRODUÇÃO

A Parvovirose canina é uma das afecções virais mais importantes que acomete cães jovens com menos de seis meses de idade, é responsável por altas taxas de morbidade e mortalidade (ANGELO et al. 1988). Os sinais clínicos da infecção por parvovírus incluem diarreia, fezes líquidas ou pastosas, gastroenterite hemorrágica, vômitos e febre. Estas condições intestinais levam a desequilíbrio hidroeletrolítico no lúmen intestinal, rápida desidratação e alta mortalidade (GODDARD et al. 2010).

O parvovírus canino se dissemina de forma rápida na população canina por apresentar elevada resistência ambiental e ser transmitido via fecal-oral de forma direta ou indireta através do contato com fezes de cães infectados ou fômites contaminados. O vírus é excretado nas fezes dos animais infectados. Isso ocorre desde o 3º dia após inserção e até três a quatro semanas após a doença clínica ou subclínica (DECARO et al., 2005; GODDARD et al., 2010; DECARO et al., 2012).

Considerando a relevância dessa afecção em cães, novas alternativas têm sido desenvolvidas para o seu tratamento. Entre elas, destaca-se o uso das imunoglobulinas Y (IgY), que são anticorpos produzidos por galinhas poedeiras (*Gallus domesticus*). Estudos tem demonstrado benefícios da utilização de imunoglobulinas sobre a saúde intestinal de cães, sendo esta uma alternativa promissora para o tratamento dessa patologia de grande relevância para esta espécie (NGUYEN et al. 2006).

REVISÃO DE LITERATURA

Parvovírus

O parvovirus canino (CPV) é um membro da família Parvoviridae, subfamília Parvovirinae e ao gênero Parvovírus, atualmente renomeado de Protoparvovirus (HOELZER et al., 2010; SHACKELTON et al., 2005). Existem dois tipos de parvovírus que afetam cães: CPV-1 e CPV-2. O CPV-1 causa sintomas leves, como gastroenterite, pneumonia e miocardite em filhotes com uma a três semanas de idade. Já o CPV-2 é responsável pela forma clássica de enterite parvovirótica. O vírus afeta células de rápida divisão, como células progenitoras da medula óssea e o epitélio intestinal das criptas (NELSON; COUTO. 2023).

O CPV infecta inicialmente as tonsilas, os linfonodos mesentéricos e outros tecidos linfoides. Após alguns dias, ocorre viremia e disseminação viral nas fezes antes do aparecimento dos sinais clínicos, sendo o período de incubação de 7 a 14 dias. O CPV tem como alvo as células das criptas intestinais, resultando em sintomas clínicos após cerca de 6 a 10 dias. Os animais infectados apresentam leucopenia e neutropenia devido ao aumento da demanda tecidual, desvio das células circulantes e esgotamento das células da medula óssea. Em casos raros, pode ocorrer a forma miocárdica do CPV, que causa morte súbita em filhotes. Ainda, casos graves podem levar à sepse e endotoxemia por bactérias gram-negativas, resultando em colapso circulatório, falência de múltiplos órgãos e morte (TILLEY; SMITH, 2015).

Muitos métodos foram desenvolvidos para o diagnóstico laboratorial da infecção por CPV-2. Os testes baseiam-se na detecção de antígenos virais do CPV-2 nas fezes dos cães, pela demonstração de título elevado de anticorpos contra parvovírus canino ou por necropsia e histopatologia (DECARO et al., 2012).

24º Encontro Acadêmico de Produção Científica do Curso de Medicina Veterinária, ISSN 1982-0151

O tratamento da parvovirose canina, por sua vez, apoia-se nos em cuidados de suporte ao animal para reestabelecer o equilíbrio hidroeletrolítico e a glicemia e assim, aguardar o retorno da função intestinal e imune. Para se compensar a deficiência imunológica temporária, se faz uso de tratamentos para prevenir infecções bacterianas secundárias e reduzir a êmese (SCOTT-MORRIS et al., 2016).

Imunoglobulinas específicas da gema do ovo de galinhas (IgY)

As imunoglobulinas são moléculas com alta especificidade para se ligar e inativar substâncias nocivas, como moléculas tóxicas ou antígenos, as quais poderão invadir o corpo. São proteínas que atuam como componentes críticos em cada estágio da resposta imunológica humoral (ALZARI et al., 1988).

A imunoglobulina IgY é o maior anticorpo produzido por galinhas poedeiras (*Gallus domesticus*). Estes animais são produtores eficientes de anticorpos poli clonais em comparação aos mamíferos. O processo de produção consiste em isolamento dessas galinhas, imunização com vacinas intramusculares no músculo peitoral contendo óleo adjuvante com antígeno. Sete semanas após a imunização inicial, uma imunização de reforço é administrada do mesmo modo. Após duas a seis semanas, os ovos imunizados são colhidos e reunidos quando o título de anticorpo atinge o pico nas gemas e passam por pulverização para fazer o IgY em pó (NGUYEN et al. 2006).

Estes anticorpos oriundos da gema do ovo das galinhas oferecem uma abordagem mais ética e eficiente em relação ao uso de animais. A produção de IgY é mais econômica do que a produção de anticorpos derivados de mamíferos, pois a criação de galinhas é menos dispendiosa e o processo de extração/separação dos anticorpos é econômico, apresentando alto rendimento, simplicidade e rapidez. Tal fato resulta em uma redução significativa nos custos associados à produção desses anticorpos (KARLSSON, KOLLBERG, LARSSON, 2004).

Estudos anteriores avaliaram a eficácia da utilização de IgY no tratamento da parvovirose. Nguyen et al. (2006) avaliaram 10 cães que foram expostos ao vírus e posteriormente divididos em três grupos. O primeiro grupo recebeu 2 g de IgY em pó e não apresentou sinais clínicos, o segundo grupo recebeu 0,5 g e apresentou manifestações clinicas menos graves, enquanto o terceiro grupo não recebeu IgY e apresentou todas as manifestações clínicas da doença. Esse estudo demonstra a utilidade de IgY na proteção de cães contra a doença clínica induzida por CPV-2.

Em um outro estudo realizado por Scheraiber et al. (2015), objetivou-se avaliar a eficiência da suplementação de IgY (suplemento AI-G 12) em 12 cães diagnosticados com Parvovirose. Os animais foram divididos em dois grupos, sendo que o primeiro grupo recebeu o suplemento quatro vezes ao dia e o segundo recebeu o tratamento convencional com medicamentos. O primeiro grupo demonstrou melhora clínica significativa em três dias, com fezes mais bem formadas, ausência de diarreia e vômito, e taxa de sobrevivência de 100%. O segundo grupo, por sua vez, levou cerca de 15 dias para recuperação e apresentou taxa de sobrevivência de 50%, leucocitose e todos os sinais clínicos da doença.

CONSIDERAÇÕES FINAIS

O uso de imunoglobulinas Y como suporte no tratamento de doenças virais, como a Parvovirose, é uma alternativa promissora para o sucesso e aumento de sobrevida de pacientes. Os resultados da revisão sugerem que a imunização passiva por meio da administração oral de IgY específica pode ser útil no tratamento de cães com doença clínica por CPV-2. Além disso, representa uma alternativa mais econômica, uma vez que a criação de galinhas é menos dispendiosa e o processo de separação do anticorpo é econômico e apresenta alto rendimento, baixo custo e rapidez.

REFERÊNCIAS

ALZARI, P.M., LASCOMBE, M.B., POLJAK, R.J. **Three-Dimensional structure of antibodies**. Annual Review of Immunology. v.6, p. 555-580. 1988

ANGELO, M.J.O HAGIWARA, M.K., JULY, J.R., CARVALHO, R.P.S., BACCARO, M.R. Isolamento de parvovírus canino no Brasil. Revista da Faculdade de Medicina Veterinária e Zootecnia. Universidade de São Paulo. v.25, n.1, p.123-134, 1988.

DECARO N., DESARIO C., CAMPOLO M., ELIA G., MARTELLA V., RICCI D., LORUSSO E., BUONAVOGLIA C. Clinical and virological findings in pups naturally infected by canine

24º Encontro Acadêmico de Produção Científica do Curso de Medicina Veterinária, ISSN 1982-0151

parvovirus type 2 Glu-426 mutant. Journal of veterinary diagnostic investigation, v.17, n.2, p.133-138, 2005.

DECARO N.; BUONAVOGLIA, C. Canine parvovirus-a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Veterinary Microbiology, v.155, n.1, p.1-12, 2012.

GODDARD, A.; LEISEWITZ, A. L. **Canine parvovirus**. Veterinary Clinics. Small Animal Practice, v. 40, n. 6, p. 1041-1053, 2010.

HOELZER, K.; PARRISH, C. R. **The emergence of parvoviruses of carnivores**. Veterinary Research, v.41, p.39-42, 2010.

KARLSSON, M., KOLLBERG, H., LARSSON, A. Chicken IgY: utilizing the evolutionary advantage. World's Poultry Science Association. v.60, p.341-348, 2004.

NGUYEN, S.V., UMEDA, K., YOKOHAMA, H., TOHYA, Y., KODAMA, Y. **Passive protection of dogs against clinical disease due to Canine parvovirus-2 by specific antibody from chicken egg yolk**. The Canadian Journal of Veterinary Research. v.70, p. 62-64, 2006.

NELSON, R. W. Medicina Interna de Pequenos Animais 6º edição. Rio de Janeiro: 2023. 1560 p.

SCHERAIBER M., FÉLIX C., KNOPF T.A., MORAES CTC., DA SILVA AVF., FÉLIX AP. **Aplicação** direta de ovo hiperimunizado (Al-G) como suporte no tratamento de animais acometidos por **Parvovírus**. Medvep - Revista Científica de Medicina Veterinária - Pequenos Animais e Animaisde Estimação; 2015; 13(43); 98-104.

SCOTT-MORRIS, B.; WALKER, D. **Nursing the patient with parvovirus**. Veterinary Nursing Journal, v.31, n.1, p.25-29, 2016.

SHACKELTON, L. A.; PARRISH, C. R.; TRUYEN, U.; HOLMES, E. C. **High rate of viral evolution associated with the emergence of carnivore parvovirus**. Proceedings of the National Academy of Sciences, v.102, p. 379-384, 2005.

TILLEY, L. P. Consulta Veterinária em 5 minutos espécies Canina e Felina 5º edição. São Paulo: 2015. 1497 p.